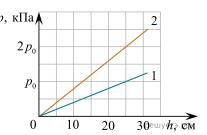
Демонстрационный вариант теста по физике 2016 год.

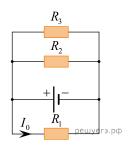

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Чтобы измерить силу, необходимо воспользоваться прибором, который называется:
 - 1) вольтметр
- 2) барометр
- 3) штангенциркуль
- 4) часы
- 5) динамометр
- **2.** Если кинематические законы прямолинейного движения тел вдоль оси Ox имеют вид: $x_1(t) = A + Bt$, где A = 10 м, B=1,2 м/с, и $x_2(t)=C+Dt$, где C=45 м, D=-2,3 м/с, то тела встретятся в момент времени t, равный:
 - 1) 20 c
- 2) 18 c
- 3) 16 c 4) 13 c
- 5) 10 c
- 3. Поезд, двигаясь равноускоренно по прямолинейному участку железной дороги, за промежуток времени $\Delta t = 20$ с прошёл путь s=340 м. Если в конце пути модуль скорости поезда $\upsilon=19$ м/с, то модуль скорости υ_0 в начале пути был равен:
 - 1) 10 м/c
- 2) 12 m/c 3) 13 m/c
- 4) 15 m/c
- **4.** На материальную точку массой m=0.50 кг действуют две силы, модули которых $F_1=4.0$ H и $F_2=3.0$ H, направленные под углом $\alpha = 90^\circ$ друг к другу. Модуль ускорения a этой точки равен:

 - 1) 2.0 m/c^2 2) 5.0 m/c^2 3) 8.5 m/c^2 4) 10 m/c^2 5) 14 m/c^2

- **5.** Мяч свободно падает с высоты H = 9 м без начальной скорости. Если нулевой уровень потенциальной энергии выбран на поверхности Земли, то отношение потенциальной энергии Π мяча к его кинетической энергии K на высоте h=4 м равно:
 - 1) $\frac{2}{3}$ 2) $\frac{3}{5}$ 3) $\frac{4}{5}$ 4) $\frac{4}{7}$ 5) $\frac{5}{4}$
- 6. На рисунке представлены графики (1 и 2) зависимости гидростатического давления p от глубины h для двух различных жидкостей. Если плотность первой жидкости ho_1 p, к Π а h= 0.80 г/см^3 , то плотность второй жидкости ρ_2 равна:


- 1) 0.80 r/cm^3 2) 0.90 r/cm^3 3) 1.4 r/cm^3 4) 1.6 r/cm^3
- 5) 1.8 r/cm^3
- 7. Идеальный газ массой m=6.0 кг находится в баллоне вместимостью V=5.0 м³. Если средняя квадратичная скорость молекул газа $\langle v_{\text{KB}} \rangle = 700 \text{ м/c}$, то его давление p на стенки баллона равно:

 - 1) 0,2 МПа 2) 0,4 МПа
- 3) 0,6 MΠa
- 4) 0,8 MΠa
- 5) 1,0 MΠa
- **8.** В некотором процессе зависимость давления p идеального газа от его объема V имеет вид $p=\frac{A}{V}$, где A коэффициент пропорциональности. Если количество вещества постоянно, то процесс является:
 - 1) адиабатным
- 2) изотермическим
- 3) изохорным
- 4) изобарным
- 5) произвольным
- 9. В закрытом баллоне находится v=2,00 моль идеального одноатомного газа. Если газу сообщили количество теплоты Q = 18,0 кДж и его давление увеличилось в k = 3,00 раза, то начальная температура T_1 газа была равна:
 - 1) 280 K
- 2) 296 K 3) 339 K 4) 361 K 5) 394 K

- 10. Единицей индуктивности в СИ является:
 - 1 Γ
- 2) 1 A 3) 1 Φ 4) 1 B
 - 5) 1 O_M
- 11. Два одинаковых маленьких проводящих шарика, заряды которых $q_1=32$ нКл и $q_2=18$ нКл, находятся в воздухе $(\epsilon=1)$. Шарики привели в соприкосновение, а затем развели на расстояние r=15 см. Модуль силы F электростатического взаимодействия между шариками равен:

- 1) $1.5 \cdot 10^{-4} \,\mathrm{H}$ 2) $2.0 \cdot 10^{-4} \,\mathrm{H}$ 3) $2.5 \cdot 10^{-4} \,\mathrm{H}$ 4) $3.0 \cdot 10^{-4} \,\mathrm{H}$ 5) $3.5 \cdot 10^{-4} \,\mathrm{H}$

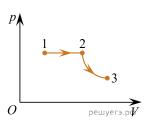
- 12. Электрическая цепь, схема которой приведена на рисунке, состоит из источника постоянного тока и трёх резисторов, сопротивления которых $R_1 = R$ и $R_2 = R_3 = 2R$ (см. рис.). Если сила тока, протекающего через резистор с сопротивлением R_1 , равна I_0 , то сила тока I, протекающего через источник тока, равна:

- 1) $3I_0$ 2) $2I_0$ 3) $\frac{3}{2}I_0$ 4) I_0 5) $\frac{1}{2}I_0$
- 13. Два тонких проводящих контура, силы тока в которых I_1 и I_2 , расположены в одной плоскости (см. рис.). Если в точке O (в центре обоих контуров) модули индукции магнитных полей, создаваемых каждым из токов, $B_1 = 6.0$ мТл и $B_2 = 8.0$ мТл, то модуль индукции B результирующего магнитного поля в точке O

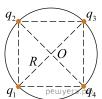
- 1) 0 мТл
- 2) 2 мТл 3) 7 мТл
- 4) 12 мТл
- 5) 14 мТл
- 14. Энергия магнитного поля катушки индуктивности, сила тока в которой $I_1 = 2$ A, равна $W_1 = 3$ Дж. Если при равномерном уменьшении силы тока в катушке возникает ЭДС самоиндукции $\varepsilon_{si}=3$ В, то модуль скорости изменения силы тока $\left|\frac{\Delta I}{\Delta t}\right|$ в ней равен:
 - 1) 1 A/c 2) 2 A/c 3) 3 A/c 4) 4 A/c

- 5) 5 A/c
- 15. Расстояние между соседними гребнями морских волн l = 8,0 м. На поверхности воды качается лодка, поднимаясь вверх и опускаясь вниз. Если модуль скорости распространения волн u = 4.0 м/с, то частота ν колебаний лодки равна:
 - 1) 4,0 Гц
- 2) 2,0 Гц 3) 1,5 Гц
- 4) 1,0 Гц
- 5) 0,5 Гц
- **16.** Если фототок прекращается при задерживающем напряжении $U_{_3} = 2{,}25~\mathrm{B},$ то модуль максимальной скорости υ_{max} фотоэлектронов равен:

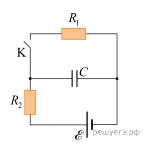
 - 1) $9.7 \cdot 10^5$ m/c 2) $8.9 \cdot 10^5$ m/c 3) $7.4 \cdot 10^5$ m/c 4) $6.2 \cdot 10^5$ m/c 5) $4.5 \cdot 10^5$ m/c


- 17. Луч света падает под углом $\alpha = 60^{\circ}$ на поверхность стекла, находящегося в вакууме. Если угол преломления луча $\gamma = 30^{\circ}$, то модуль скорости и света в стекле равен:

- 1) $1,1 \cdot 10^8 \text{ m/c}$ 2) $1,7 \cdot 10^8 \text{ m/c}$ 3) $2,9 \cdot 10^8 \text{ m/c}$ 4) $3,7 \cdot 10^8 \text{ m/c}$ 5) $5,1 \cdot 10^8 \text{ m/c}$
- **18.** Если ядро радиоактивного изотопа $_{0}^{18}$ F испускает протон, то массовое число A нового элемента равно:
 - 1)8
- 2)9
- 3) 16


4) 17

- 5) 19
- **19.** Тело движется равноускоренно в положительном направлении оси Ox. В момент начала отсчёта времени $t_0 = 0$ с проекция скорости тела $v_{0x} = 4.0$ м/с. Если проекция ускорения тела на ось $a_x = 4.0$, то проекция перемещения Δr_x тела за шестую секунду равна ... м.
- **20.** Деревянный ($\rho_{\pi} = 0.8 \text{ г/см}^3$) шар лежит на дне сосуда, наполовину погрузившись в воду ($\rho_{\text{в}} = 1 \text{ г/см}^3$). Если модуль силы взаимодействия шара со дном сосуда F = 9 H, то объём V шара равен ... дм³.
- 21. Тело массой m=300 г, подвешенное на легком резиновом шнуре, равномерно вращается по окружности в горизонтальной плоскости. Шнур во время движения груза образует угол $\alpha = 60^{\circ}$ с вертикалью. Если потенциальная энергия упругой деформации шнура $E_{\Pi} = 90,0$ мДж, то жесткость k шнура равна ... Н/м.
- 22. Два тела массами $m_1 = 2,00$ кг и $m_2 = 1,50$ кг, модули скоростей которых одинаковые ($v_1 = v_2$), движутся по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой $\upsilon = 10 \text{ м/c}$, то количество теплоты Q, выделившееся при столкновении, равно ... Дж.
- 23. Вертикальный цилиндрический сосуд с аргоном (M=40 г/моль), закрытый легкоподвижным поршнем массой $m_1=12$ кг, находится в воздухе, давление которого $p_0 = 100$ кПа. Масса аргона $m_2 = 16$ г, площадь поперечного сечения поршня S = 60 см². Если при охлаждении аргона занимаемый им объём уменьшился на $\Delta V=830~{
 m cm}^3$, то температура газа уменьшилась на ΔT , равное ... К. (Ответ округлите до целого числа.)


- **24.** Гружёные сани массой M=264 кг равномерно движутся по горизонтальной поверхности, покрытой снегом, температура которого t=0,0 °C. Коэффициент трения между полозьями саней и поверхностью снега $\mu=0,035$. Если всё количество теплоты, выделившееся при трении полозьев о снег, идёт на плавление снега ($\lambda=330$ кДж/кг), то на пути s=400 м под полозьями саней растает снег, масса m которого равна ... г.
- **25.** Два моля идеального одноатомного газа перевели из состояния 1 в состояние 3 (см. рис.), сообщив ему количество теплоты Q=5,30 кДж. Если при изобарном расширении на участке $1\to 2$ температура газа изменилась на $\Delta T=120$ K, то на участке $2\to 3$ при изотермическом расширении газ совершил работу A, равную ... Дж.

- **26.** Источник радиоактивного излучения содержит $m_0 = 1,2$ г изотопа радия $^{226}_{88}$ Ra, период полураспада которого $T_{1/2} = 1,6$ тыс. лет. Через промежуток времени $\Delta t = 6,4$ тыс. лет масса m нераспавшегося изотопа радия составит ... мг.
- **27.** На окружности радиуса R=3.0 см в вершинах квадрата расположены электрические точечные заряды $q_1=5.0$ нКл, $q_2=q_3=2.0$ нКл, $q_4=-2.0$ нКл (см. рис.). Модуль напряжённости E электростатического поля, образованного всеми зарядами в центре окружности (точка O), равен ... кВ/м.

- **28.** Нагревательный элемент сопротивлением R=8,0 Ом подключён к источнику постоянного тока, коэффициент полезного действия которого $\eta=80$ % при данной нагрузке. При этом мощность нагревательного элемента составляет P=32 Вт. ЭДС ϵ источника равна ... В.
- **29.** Протон, начальная скорость которого $v_0=0$ м/с, ускоряется разностью потенциалов $\varphi_1-\varphi_2=0.45$ кВ и влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции. Если модуль вектора магнитной индукции магнитного поля B=0.30 Тл, то радиус R окружности, по которой протон будет двигаться в магнитном поле, равен ... мм. (Ответ округлите до целого числа мм.)
- **30.** Электрическая цепь состоит из источника постоянного тока с ЭДС $\varepsilon=300$ В, двух резисторов сопротивлениями $R_1=100$ Ом, $R_2=200$ Ом и конденсатора ёмкостью C=10 мкФ (см. рис.). В начальный момент времени ключ К был замкнут и в цепи протекал постоянный ток. Если внутренним сопротивлением источника тока пренебречь, то после размыкания ключа К на резисторе R_2 выделится количество теплоты Q, равное ... мДж

